

Number and Operations		
Placement Grade	Lesson Title	Lesson Description
	Modeling and Comparing	Model whole numbers to 120, and relate them to their standard form; use place
K, 1, 2	Numbers to 120	value to determine the digit value; compare and order numbers up to 120.
K, 1, 2	The Place Value System of Whole Numbers	Model whole numbers to the thousands place, and relate models to the standard form; use place value to determine a digit's value based on its position through thousands.
	Composing, Decomposing, and Ordering Numbers Using Place	Compare and order numbers to the millions, and write whole numbers to the millions
K, 1, 2	Value	in standard, word, and expanded forms.
К 1 2	Addition and Subtraction within	Add and subtract whole numbers with sums and minuends less than or equal to 100 using models and place-value strategies, without regrouping
IX, I, Z	Multiplication and Division: Fact	Use mental strategies to multiply and divide two whole numbers within 100 to
3	Fluency	increase fact fluency; solve real-world problems quickly using fact fluency.
		Compare fractions with the same denominator using visual models, including real-
		world problems; relate a fraction to its visual representation as a circle diagram in
		both directions or a fraction bar in both directions, explaining the role of the
3	Visual Models of Fractions	numerator and denominator.
3	Fractions on the Number Line	Compare fractions with the same denominator using the number line, including real- world problems; represent fractions on a number line.
		Identify the value of a digit in whole numbers through 1,000,000,000; write whole
	Place Value Concepts up to	numbers through 1,000,000,000 in expanded and word forms; compare two whole
4	1,000,000,000	numbers through 1,000,000,000.
Л	Benchmark Fractions	Choose the benchmark nearest a given fraction; compare a fraction to a benchmark,
<u> </u>	Comparing Fractions via	Use benchmark fractions to compare fractions and to order 3 or more fractions:
4	Benchmark Fractions	compare and order real-world measurements using a benchmark.

Placement Grade	Lesson Title	Lesson Description
		Compare two fractions with different denominators; compare two fractions with
		different denominators including at least one mixed number; order three or more
	Using Equivalent Fractions to	fractions with different denominators, including those with at least one mixed
4	Compare Fractions	number; rewrite fractions to have a common denominator.
		Find an equivalent form of a computed sum or difference, including lowest terms;
	Adding and Subtracting	model and compute sums and differences of fractions when the denominator is the
4	Fractions	same, including real-world problems.
	Working with Fractions with	Add two fractions with denominators 10 and 100 using a common denominator;
4	Denominators of 10 and 100	write fractions with denominators 10 or 100 as decimals and vice versa.
		Add decimals using a variety of strategies, including counting up and the standard
4	Adding Decimals	algorithm; use decimals to find real-world sums involving money.
		Subtract by place value using a variety of strategies including counting up and the
4	Subtracting Decimals	standard algorithm; solve real-world problems involving subtraction of decimals.
		Add and subtract two fractions with different denominators, including real-world
	Using Equivalent Fractions to	problems; use visual representations to add and subtract fractions with
5	Add and Subtract Fractions	denominators that are different but compatible, including real-world problems.
		Compare decimals using various place value strategies and real-world
5	Comparing Decimals	measurements.
	Multiplying and Dividing	
5	Decimals by a Power of 10	Multiply and divide decimals by powers of 10, including real-world problems.
		Multiply whole numbers by decimals less than one, including real-world problems;
	Multiplying a Whole Number by	use rounding to estimate a product before computing as a means of developing a
5	a Decimal Less than 1	sense of the size of the product, including real-world problems.
		Multiply decimals to the hundredths place, including real-world problems; use
		rounding to estimate a product before computing as a means of developing a sense
		of the size of the product, including the position of the decimal point in the product,
5	Multiplying Decimals	including real-world problems.
	Unit Fractions and Whole	Divide a unit fraction by a whole number and vice versa; use unit fraction and whole
5	Number Division	number division to solve real-world problems.

Placement Grade	Lesson Title	Lesson Description
	Adding and Subtracting	
5	Decimals	Add and subtract decimals.
	Dividing a Fraction by a Whole	Divide a fraction by a whole number equal to the fraction's denominator in real-world
6	Number	situations.
		Multiply fractions using models and the standard algorithm including real-world
6	Fraction Multiplication	problems.
	Dividing a Fraction by a	
6	Fraction	Use models to divide a fraction by a fraction.
	Finding a Rule for Dividing	
6	Fractions	Use the standard algorithm to divide fractions
	Fraction Multiplication and	
6	Division	Solve real-world problems using fraction multiplication and fraction division.
	Using a Rule to Find Decimal	Multiply decimals, and use a rule to place the decimal point in a product; use
6	Products	estimation to determine reasonableness.
		Divide whole numbers with and without remainders, writing remainders as
6	Dividing Whole Numbers	terminating or repeating decimals; includes real-world problems.
		Divide whole numbers by decimals, and divide decimals by decimals; use estimation
6	Dividing Decimals	to determine reasonableness.
		Graph rational numbers on a number line; compare rational numbers using symbols
6	Comparing Rational Numbers	=, <, and >.
		Order rational numbers; write and interpret statements of comparison for rational
6	Ordering Rational Numbers	numbers in real-world contexts.
		Use visual representations and apply properties of operations to add integers,
6	Adding Integers	including real-world problems.
		Use visual representations, additive inverse, and properties of operations to subtract
6	Subtracting Integers	integers, including real-world problems.
		Use visual representations, properties of operations, and rules of signed numbers to
6	Multiplying Integers	multiply integers, including real-world problems.
		Use visual representations, properties of operations, and rules of signed numbers to
6	Dividing Integers	divide integers, including real-world problems.

Placement Grade	Lesson Title	Lesson Description
Grade	Adding and Subtracting	Add and subtract rational numbers in fraction form including with the use of visual
7	Fractions	representations
1	Flactions	Multiply rational numbers in fraction form: use the rules of signed numbers and
7	Multiplying Fractions	multiply rational numbers in fraction form, use the rules of signed numbers and
1		Divide retional numbers in fraction form: use the rules of signed numbers and
7	Dividinal Frantiana	Divide rational numbers in traction form, use the rules of signed numbers and
/	Dividing Fractions	properties of operations to divide fractions; estimate quotients of fractions.
7	Solving Problems Involving	Solve real-world and mathematical problems involving addition, subtraction,
1	Rational Numbers	multiplication, and division with rational numbers.
		Represent positive and negative rational numbers on vertical number lines and
		horizontal number lines; write a rational number as a decimal that eventually
		terminates or repeats; describe real-world situations that can be represented by
8	Rational Numbers	rational numbers, including where opposite quantities combine to make 0.
	Finding the Hypotenuse in Right	Given lengths of any two legs of a right triangle, find the length of the hypotenuse,
8	Triangles	including real-world problems.
		Differentiate between rational and irrational numbers; express repeating decimals
8	Exploring Real Numbers	with bar notation.
		Algebraic Reasoning
	Addition and Subtraction within	Add and subtract whole numbers with sums and minuends less than or equal to 10
K, 1, 2	10 Using Models	using models; find the number that makes 10 when added to a given number.
	Addition and Subtraction as	Apply the inverse relationship between addition and subtraction to solve one-step
K, 1, 2	Inverse Operations	equations and to model and solve real-world problems.
	Using Addition and Subtraction	
K, 1, 2	to Make Comparisons	Solve addition and subtraction problems involving comparison.
	Addition and Subtraction: Fact	Use mental strategies to add and subtract two whole numbers within 20 that do not
K, 1, 2	Fluency	involve regrouping in order to increase fact fluency.
	Unknowns in Multiplication and	Determine the unknown whole number in multiplication and division equations
3	Division Equations	relating three whole numbers.
3	Multistep Word Problems	Solve real-world problems with two operations involving whole numbers.

Placement Grade	Lesson Title	Lesson Description
Ciddo		Identify a set of equations or steps that can be used to solve a word problem
	Multisten Real-World Problems	containing whole numbers, including multisten problems in which remainders must
4	with Whole Number Operations	be interpreted
-		Describe numbers according to their characteristics (factors, multiples, prime, and
5	Factors and Multiples	composite); solve real-world problems to find factors or multiples.
	•	Evaluate expressions with and without grouping symbols using multiple operations;
	Interpreting and Simplifying	solve real-world problems involving multistep operations; identify expressions
5	Multistep Expressions	involving multiple operations that model problems.
		Generate two numerical patterns using two given rules; identify apparent
		relationships between corresponding terms in two related numerical patterns; form
	Introduction to Related	ordered pairs consisting of corresponding terms from two patterns, and graph the
5	Numerical Patterns	ordered pairs on a coordinate plane.
		Geometry and Measurement
		Classify angles (right, acute, obtuse) and lines (perpendicular, parallel) in two-
	Attributes and Classification of	dimensional figures; classify quadrilaterals based on their attributes and properties;
3, 4, 5	Figures	identify lines of symmetry.
	Perimeter, Area, and Volume:	Express perimeter, area, and volume using appropriate measurements; determine
3, 4, 5	Concepts and Units	which kind of measurement is appropriate for a given real-world situation.
	Perimeter, Area, and Volume:	Calculate perimeter and area of rectangles and volume of rectangular solids,
3, 4, 5	Calculations	including real-world problems.
	Connecting Area and	Use area models to represent multiplication; find the area of a rectangle by
3	Multiplication	multiplying the side lengths.
	Decomposing Shapes to Find	Find area by decomposing composite shapes into rectangles and adding the areas;
3	Area	use area models to represent the distributive property.
	Problem Solving within	Know relative sizes of measurement units within one system of units; solve word
4	Measurement Systems	problems involving distances, time, liquid volumes, and masses of objects.
		Convert measures within both metric and customary systems to solve mathematical
5	Converting Measurements	and real-world problems.

Placement Grade	Lesson Title	Lesson Description		
	Data Analysis			
	Γ			
3, 4, 5	Summarizing Data Using Data Displays	Summarize a data set using a dot plot, bar graph, and stem-and-leaf plot; solve one- and two-step problems using data represented with a variety of data displays.		
5	Introduction to Graphing Points and Scatterplots	Identify the positive integer coordinates of a point graphed in the coordinate plane; graph points with positive integer coordinates; represent discrete paired data on a scatterplot.		
		Proportionality		
	Describing Part-to-Part	Use models to represent relationships between quantities; describe ratio		
6	Relationships	relationships between two quantities using informal language.		
6	Using Ratio Notation	Use the notation of ratio language to describe relationships between two quantities.		
6	Equivalent Ratios	Find missing values in a table using ratio reasoning; analyze patterns in a table of equivalent ratios.		
6	Understanding Unit Rates	Find unit rates.		
6	Comparing Ratios	Compare ratios in mathematical contexts, including using visual models.		
6	Ratios in Real-World Situations	Compare ratios in real-world contexts.		
	Measurements in the	Convert units of measurement (capacity, length, time, weight) in the customary		
6	Customary System	system, including real-world problems.		
	Measurements in the Metric			
6	System	Convert metric units of measurement, including solving real-world problems.		
	Converting Measurements			
6	between Systems	Convert measurement units between the customary and metric systems.		
6	Understanding Speed	Convert measures of speed within a system; find speed given distance and time.		
6	Unit Pricing	Find unit prices, and use them to solve unit rate problems.		

Placement Grade	Lesson Title	Lesson Description
		Solve problems involving percents of 100; use models to illustrate the meaning of
6	Understanding Percent	percents; convert fractions to percents by finding an equivalent fraction over 100.
	Fraction-Decimal-Percent	
6	Equivalents	Find equivalent forms of fractions, decimals, and percents without models.
	Using Multiplication to Find	
6	Percents	Find a percent of a number using multiplication.
	Using Equivalent Ratios to Find	Represent percent problems using equivalent ratios; find the part of a whole that is
6	Percents	not a multiple of 100, given a percent.
	Using Equivalent Ratios to Find	
6	a Whole	Use equivalent ratios to find the whole, given the percent.
		Interpret circle graphs, and use them to make predictions; construct a circle graph to
7	Circle Graphs	display data.
		Use a given unit rate and proportional reasoning to complete a table and solve
7	Unit Rates	problems.
	Finding a Constant of	Find the constant of proportionality from verbal descriptions, tables, graphs, and
7	Proportionality	diagrams.
		Determine a unit rate from a real world context; apply unit rates to solve for an
7	Applications of Unit Rates	unknown in real world problems; use unit rates to make comparisons.
		Graph a proportional relationship from tables and from verbal descriptions; identify
	Graphing Proportional	the meanings of points on the graph of a proportional relationship; determine the
7	Relationships	characteristics of such a graph.
	Identifying Proportional	Analyze data in tables and graphs to determine if the given relationships are
7	Relationships	proportional.
		Identify an equivalent percent, fraction, or decimal represented in multiple forms;
		create diagrams to solve for a percent in real world problems; find the percent of a
		number using the fractional or decimal equivalent form of a percent to write an
7	Introduction to Percents	expression from a diagram.
		Solve problems by finding the percent of a number, including amounts of gratuity
		and tax, by using diagrams and expressions; find the percent of a number when the
7	Finding a Percent of a Number	percent is more than 100.

Placement Grado	Losson Titlo	Losson Description
Graue	Lesson fille	Selve for the total emount in gratuity, tay, or commission problems by using
		Solve for the total amount in gratuity, tax, or commission problems by using
		diagrams and expressions, understanding that it is a process of adding to the
7	Finding a Total Amount	of subtracting from the original amount
1		
		Find the original amount in real world percent problems involving gratuity, tax,
7	Finding an Original Amount	commission, markup, discount, or markdown.
		Find the percent change by using the ratio of change in quantity to original amount;
7	Percent Increase and Decrease	use percent increase and decrease to solve real world problems.
		Solve multi-step percent problems involving tax, gratuity, commission, markup,
7	Applications of Percent	discount, and markdown.
7	Percent Error	Find percent error by using the ratio of amount of change to actual value.
		Identify on event with a given probability on impropriate writery, likely, or eastern
		describe the probability of an event of a number between 0 and 1, which represented
		the likelihood of the event use the fact that the sum of the probabilities of all
7	Understanding Drehability	the likelihood of the event, use the fact that the sum of the probabilities of all
7		Find the experimental probability of an event, expressing it as a ratio and using it to
7	Experimental Probability	make predictions
1		Compare experimental results to theoretical probabilities and make conjectures
	Experimental vs. Theoretical	about the results: explain possible sources of discrepancy between the theoretical
7	Probability	and experimental probability of an event
•	Compound Events and Sample	Represent the sample space of a compound event with a table, a tree diagram, and
7	Space	a list, and find all of its outcomes.
	Probability of Compound	Find probabilities of independent and dependent compound events using organized
7	Events	lists, tables, or tree diagrams.
	Simulations to Estimate	Design a simulation to experimentally determine the probability of compound events;
7	Probabilities	use a simulation to generate frequencies for compound events.
		Use a given scale factor to find an unknown length on a reduction, an enlargement,
7	Scale Factor	and an original.

Placement Grade	Lesson Title	Lesson Description
		Identify a scale factor from given dimensions, and use it to calculate unknown
7	Determining a Scale Factor	dimensions.
	Solving Scale Problems Using	
7	Proportions	Use proportional relationships to solve problems involving scale drawings.
		Find actual distances, scale distances, and scale factors in situations involving
7	Maps	maps.
		Calculate income tax for earned wages; identify the components of a personal
	Budgeting and Being a Smart	budget, and determine what percentage each category is of the total; compare
7	Consumer	savings from sales, rebates, and coupons.
		Translate tables and graphs into equations; generate different representations of the
		same two variable data; recognize that tabular and graphical representations may
8	Tables, Graphs, and Equations	be partial representations.
		Identify functions from tables, graphs, and equations; determine if a real-world
8	Introduction to Functions	situation describes a functional relationship.
		Analyze linear functions to find the rate of change and initial value; interpret the rate
8	Constructing Linear Functions	of change and initial value of a linear function in terms of the situation it models.
		Analyze a graph to determine slope and y-intercept; graph a linear function using
		the slope and y-intercept; write a linear equation in slope-intercept form given the
8	Slope-Intercept Form	slope and y-intercept.
		Use a graphing calculator to graph scatterplots and draw the trend line; draw a line
8	Drawing Trend Lines	of best fit in scatterplots, and identify its purpose.
	Using Equations to Represent	Find and interpret the slope of a trend line; create the linear equation of the trend
8	Trend Lines	line.
		Use a calculator to graph a scatterplot and create line of best fit; substitute x and y
		values into the data to create predictions of a real world scenario; analyze data to
8	Making Predictions	determine interpolate and extrapolate predictions.
		Identify and describe a dilation on a coordinate plane; identify the scale factor, given
		the pre-image and the dilated-image; describe a dilation by its coordinates using the
8	Dilations	scale factor.

Placement Grade	Lesson Title	Lesson Description
0	Dilations in the Coordinate	Use the scale factor to graph dilations on the coordinate plane; describe the dilation
8	Plane	of a figure on the coordinate plane by the scale factor.
8	Rotations and Dilations	Use an algebraic representation to explain the effect of a rotation and a dilation of a two-dimensional shape on a coordinate plane
5		
	Ext	ressions, Equations, and Relationships
	Prime Numbers and Prime	Identify a number as prime or composite; represent a number as the product of its
6	Factorization	prime factors, using exponents to show repeated factors.
	Numerical Expressions with	Write numerical expressions without exponents and with whole number exponents:
6	Exponents	evaluate numerical expressions without exponents and with exponents.
-		Generate equivalent expressions using the commutative and associative properties;
6	Equivalent Expressions	use substitution to determine if two expressions without parentheses are equivalent.
	Equivalent Expressions and the	Generate equivalent expressions using the distributive property: use substitution to
6	Distributive Property	determine if two expressions are equivalent expressions, may include parentheses
0	Determining Equivalent	Determine whether two expressions are equivalent, and explain why they are or are
6	Expressions	not equivalent.
	Solving One-Step Equations:	
6	Addition and Subtraction	Solve one-step addition and subtraction equations.
	Solving One-Step Equations:	
6	Multiplication and Division	Solve one-step multiplication and division equations.
		Model, write, and solve real-world problems using one-step variable equations
	Modeling Real-World Problems	involving addition, subtraction, multiplication, and division of nonnegative rational
6	with One-Step Equations	numbers.
		Use a formula with = to find the area of a parallelogram, including real-world
6	Area of Parallelograms	problems.
6	Area of Triangles	Calculate the area of triangles using a formula with =, including real-world problems.
6	Area of Special Quadrilaterals	Find the area of special quadrilaterals, including real-world problems.

Placement		
Grade	Lesson Title	Lesson Description
6	Area of Irregular Figures	Calculate the area of irregular figures, including real-world problems.
		Find the area of triangles and rectangles that have fractional or decimal side
		lengths, including real-world problems and problems with both decimals and
	Shapes with Fractional Side	fractions; find the area of irregular figures that have decimal side lengths, including
6	Lengths	the same types of problems.
		Calculate the volume of a rectangular prism with one or more fractional or decimal
	Solving Volume Problems with	side lengths using a formula; find the value of an unknown dimension of a
6	Formulas	rectangular prism, given the remaining dimensions and the volume.
	Addition and Subtraction	Solve one-step addition and subtraction inequalities, including interpreting the result
6	Inequalities	of solving real-world inequalities.
	Multiplication and Division	Solve one-step multiplication and division inequalities, including interpreting the
6	Inequalities	result of solving real-world inequalities.
7	Writing Equations	Write equations from words, including those that represent real-world situations.
7	Solving Two-Step Equations	Solve two-step equations in the real world, and interpret the result.
7	Writing Inequalities	Write inequalities from words, and vice-versa, to represent real-world situations.
		Solve two-step inequalities, including interpreting the result of solving real-world
7	Solving Two-Step Inequalities	inequalities.
		Approximate the circumference of a circle given the diameter or radius using 3.14 or
		22/7 for pi, including single step, real-world problems; calculate the diameter or
		radius of a circle given the circumference in terms of pi; solve multi-step real-world
7	Circumference	problems involving the circumference of a circle.
		Determine the area of a circle given the radius and the diameter, including one-step,
		real-world problems; solve multi-step real-world problems involving the area of a
7	Area of a Circle	circle.
		Solve problems involving the area of composite figures that both include and do not
7	Area of Composite Figures	include circles.
		Calculate volumes of rectangular prisms and triangular prisms, including real-world
7	Volume of Prisms	problems.
7	Volume of Pyramids	Calculate volumes of pyramids, including real-world problems.
	Surface Area and Volume of	Solve problems involving the volume of triangular pyramids; use a net to calculate
7	Triangular Pyramids	the lateral and total surface area of a triangular pyramid.

Placement Grade	Lesson Title	Lesson Description
	Surface Area and Volume of	Solve mathematical and real-world problems involving the volume and the surface
8	Cylinders	area of cylinders.
	Solving with the Distributive	
8	Property	Solve one-variable linear equations using the distributive property.
	Solving Equations with Rational	Solve one-variable linear equations with rational numbers using properties of
8	Numbers	equality.
	Modeling with Variables on Both	Use algebra tiles to model and solve one-variable equations with variables on both
8	Sides	sides with and without using zero pairs.
	Exploring the Pythagorean	
8	Theorem	Identify the hypotenuse in right triangles presented with different orientations.
8	Estimating and Comparing Square Roots	Estimate square roots without using technology; plot the estimated values of square roots on a number line; make comparative statements involving square roots.
8	Unknown Leg Lengths in Right Triangles	Given the length of one leg and the hypotenuse of a right triangle, find the length of the other leg, including real-world problems; given the length of the hypotenuse of an isosceles right triangle, find the length of the legs, including real-world problems.
8	Converse to the Pythagorean Theorem	Determine if a triangle is a right triangle by using the converse of the Pythagorean theorem.
8	Introduction to the Volume of a Cylinder	Calculate the volume of a cylinder given the formula.
8	Applications with the Volume of a Cylinder	Solve real-life problems using volume of cylinders; find the area of the base of a cylinder given its volume and height.
	Introduction to the Volume of a	
8	Cone	Calculate the volume of a cone given the formula.
	Applications with the Volume of	Solve real-life problems using volume of a cone;
8	a Cone	find the area of the base of a cone given its volume and height.
	Introduction to the Volume of a	
8	Sphere	Calculate the volume of a sphere given the formula.

Placement		
Grade	Lesson Title	Lesson Description
	Spherical and Cubic Volume	Apply volume formulas, including those that evaluate perfect cubes, to find unknown measurements: solve a real-world problem utilizing the formula for volume of a
8	Applications	sphere.
	Connecting Lateral and Total	Determine the base area and lateral area of a prism and a cylinder: calculate the
8	Surface Area	surface area of a prism and a cylinder.
		Measurement and Data
6	Integers on the Number Line	Identify integers, and graph them on number lines; find the opposite of an integer.
	Plotting Points in the Four	
6	Quadrants	Graph and name points in all four quadrants; identify the quadrant a point lies in.
		Describe a data set as shown on a dot plot, using the center, spread, and overall
		shape; compare data sets using the center, spread, and overall shapes of two dot
6	Describing Data on Dot Plots	plots.
	Representing Data Sets with	Display data on a histogram, and describe the data set using the center, spread,
6	Histograms	and overall shape.
		Read or interpret a line plot, a bar graph, a line graph, and a stem and leaf plot;
6	Data Representation	identify an appropriate representation for displaying different data sets.
6	Finding the Mean	Calculate the mean of a set of data; find a missing value given the mean.
_		Find the median of a set of data; describe the impact of outliers on the mean and
6	Comparing Mean and Median	median; choose the most appropriate measure of center to describe a set of data.
		Find the range and the interquartile range of a set of data; describe the impact of
6	Range and Interquartile Range	outliers on the range and interquartile range.
	Summarizing Data Sets with	Compare two data sets with the same measure of center but different measures of
6	Statistics	spread.
6	Box Plots	Interpret and create a box plot.
		Interpret the shape of a data set in the context of the way in which data was
6	Data Displays and Statistics	collected; compare two data sets using measures of center and spread.

Placement	Loccon Title	Losson Description
Graue	Lesson Title	Lesson Description
0	Internation Developt Dev Creaks	Read or interpret a percent bar graph; match a frequency table to a related percent
0	Interpreting Percent Bar Graphs	bar graph and vice versa.
0	latemantin a True Mars Tables	Compute relative frequencies and identify associations in a two-way table; generate
6	Interpreting Two-way Tables	conclusions of the data.
-		informally compare shapes of two different data distributions with similar variations;
1	Analyzing Dot Plots	analyze two dot plots with similar variation by comparing the measures of center.
		Analyze two numerical data distributions with similar variation by comparing the
		measures of center to the measure of variability: compare the measures of center of
	Comparing Measures of Center	two sets of data using a multiple of the measure of variability, expressed as a ratio:
7	and Variability	draw an informal comparative inference about two sets of data.
		Compare two data sets with different numbers of data points by comparing two box
		plots: compare two data sets by comparing the difference in the measures of center
		and the measures of variability: draw an informal comparative inference about two
7	Comparing Box Plots	sets of data.
	Two-D	imensional and Three-Dimensional Figures
0		Identify transformation and the types of transformation; recognize pre-image and
8	Overview of Transformations	post-image of transformations, and label and name the post-image.
		Identify and describe a translation on the coordinate plane; translate figures on the
•	—	coordinate plane given as an ordered pair and verbal expression; describe a
8	Iranslations	translation using coordinates.
	Writing Algebraic Rules for	Use an algebraic representation to explain the effect of translations and a reflection
8	Translations and Reflections	of a two-dimensional shape on a coordinate plane.
		Number and Algebraic Methods
		Apply the properties of whole-number exponents to generate equivalent
9	Laws of Exponents	expressions.

Placement		
Grade	Lesson Title	Lesson Description
		Determine if a trinomial with a leading coefficient of 1 and a positive constant is
		factorable, and, if so, write it in factored form; relate the factorization to a geometric
9	Factoring Trinomials: a = 1	model.
		Determine if a trinomial with a leading coefficient of 1 and a negative constant is
	Factoring Trinomials: a = 1	factorable, and, if so, write it in factored form; relate the factorization to a geometric
9	(Continued)	model.
		Determine if a trinomial with a leading coefficient greater than 1 is factorable, and, if
9	Factoring Trinomials: a > 1	so, write it in factored form; relate the factorization to a geometric model.
		Evaluate numeric expressions and simplify algebraic expressions using properties of
9	Rational Exponents	rational exponents.
		Represent square roots of negative numbers as multiples of i and complex numbers
		in the form a + bi or in the complex plane; simplify powers of i using their cyclic
11, 12	Complex Numbers	nature.
	Operations with Complex	
11, 12	Numbers	Perform addition, subtraction, and multiplication of complex numbers.
	Factoring Polynomials	
11, 12	Completely	Analyze polynomial expressions to factor them completely.
		Evaluate a summation by expanding it; convert between series in summation
11, 12	Summation Notation	notation and expanded form.
	Summation Properties and	
11, 12	Rules	Use summation properties and rules to evaluate sums.
11, 12	Finite Geometric Series	Solve problems using the formula for the sum of a finite geometric series.
	Synthetic Division and the	Apply the remainder theorem; use synthetic division to divide a polynomial by a
11, 12	Remainder Theorem	linear factor.
		Use long division to find quotients of polynomials; use inverse operations to check
11, 12	Division of Polynomials	the result of polynomial division.
		Use the binomial theorem to expand binomials and to find a specific term in an
11, 12	The Binomial Theorem	expansion.
		Determine the roots of and factor a polynomial function; use the rational root
11, 12	Rational Roots Theorem	theorem to determine possible roots of a polynomial function.

Placement		
Grade	Lesson Title	Lesson Description
		Use the complex conjugate theorem to factor and solve polynomial equations, and
	Fundamental Theorem of	apply the fundamental theorem of algebra to determine the number of roots of a
11, 12	Algebra	polynomial function.
	Writing Poly Functions from	
11, 12	Complex Roots	Write polynomial functions from complex roots.
	Radical Equations and	Model and solve mathematical and real-world problems using radical equations, and
11, 12	Extraneous Roots	determine extraneous roots.
	Solving Equations Containing	
11, 12	Two Radicals	Solve equations containing two radicals, and determine extraneous solutions
	Line	ar Functions, Equations, and Inequalities
		Construct a table of values and/or a graph for a two-variable linear equation that
		models a situation; identify solutions that are or are not viable based on a given
		context; interpret graphs and rates by examining the quantities represented by each
	Writing and Graphing Equations	axis; write a two-variable linear equation to model a quantitative relationship,
9	in Two Variables	describing the constraints of the model based on the context.
		Calculate the rate of change of a function; determine the initial value of a function;
9	Introduction to Linear Functions	determine if a relationship is linear by analyzing the rate of change.
		Determine the slope of a line from a graph, a table of values, and ordered pairs;
		identify if the slope of a linear relationship is zero, positive, negative, or undefined;
9	Slope of a Line	interpret slope in the context of real-world scenarios.
		Identify the slope and/or y-intercept of a linear function given in slope-intercept form;
		graph a linear function given in slope-intercept form; write a linear function, in slope-
9	Slope-Intercept Form of a Line	intercept form, from a graph and from a verbal description or scenario.
		Identify the slope and/or y-intercept of a linear function given in point-slope form,
		and graph the linear function; write the equation of a line given its slope and a point
9	Point-Slope Form of a Line	on the line in point-slope form, and express the relationship as a function.
		Write the equation of a line in standard form given a graph and a scenario; identify
		the slope and/or y-intercept of a linear function given in standard form, and graph
9	Standard Form of a Line	the linear function.

Placement Grade	Lesson Title	Lesson Description
		Use a table to organize information given in mixture problems; write and solve one-
9	Solving Mixture Problems	variable linear equations to model and solve mixture problems.
		Use a table to organize information given in time-distance-rate and work problems;
		write and solve one-variable linear equations to model and solve problems of these
9	Solving Rate Problems	types.
	Modeling with Systems of	Create a system of linear equations to model a problem; interpret the solution of a
9	Linear Equations	system of linear equations in a modeling context.
	Graphing Two-Variable Linear	
9	Inequalities	Relate the graph of a two-variable linear inequality to its algebraic representation.
	Modeling with Two-Variable	Create a two-variable linear inequality to model a problem; interpret the solutions of
9	Linear Inequalities	a two-variable linear inequality in a modeling context.
		Determine if a data set shows a correlation and, if so, the type of correlation; use
_		technology to determine the line of best fit for a data set, and interpret the
9	Line of Best Fit	parameters of the model in context; use a line of best fit to make a prediction.
		Quadratic Functions and Equations
		Identify a quadratic function and values of the coefficients and constant from the
		standard form; calculate the rate of change of a quadratic function over an interval
	Introduction to Quadratic	of its domain, and compare it to linear and exponential functions; evaluate a
9	Functions	quadratic function using tables, graphs, and equations.
		Graph a quadratic function given in standard form, and identify key features from the
	Quadratic Functions: Standard	graph; identify key features from the equation of a quadratic function given in
9	Form	standard form.
		Graph a quadratic function given in vertex form; identify key features from the graph
	Quadratic Functions: Vertex	of an equation of a quadratic function given in vertex form; identify key features from
9	Form	the equation of a quadratic function given in vertex form.
		Write quadratic functions given in standard form and with a = 1 into vertex form by
		completing the square; relate the geometric model of completing the square to the
9	Completing the Square	algebraic process.

Placement Grade	Lesson Title	Lesson Description
Grade		Write guadratic functions given in standard form into vortex form by completing the
	Completing the Square	while quadratic functions given in standard form into vertex form by completing the
0		square, relate the parameters of a quadratic function in vertex form to
9		transformations of the graph $y = x$ squared.
0	Solving Quadratic Equations:	Solve problems by factoring quadratic equations given in standard form; write
9	Zero Product Property	quadratic equations given rational solutions.
	Calving Overductic Equations	Solve problems by rewnling quadratic equations in standard form and factoring,
0	Solving Quadratic Equations:	pointing out the solutions that are viable or not viable in a modeling context; write a
9	Factoring	quadratic equation that models a scenario.
0	Solving Quadratic Equations:	
9	Square Root Property	Use the square root property to solve quadratic equations.
<u> </u>	Solving Quadratic Equations:	
9	Completing the Square	Solve a quadratic equation whose leading coefficient is 1 by completing the square.
	Solving Quadratic Equations:	
•	Completing the Square	Solve a quadratic equation whose leading coefficient is greater than 1 by completing
9	(Continued)	the square.
		Determine the values of a, b, and c from a given quadratic equation in standard
		form; recognize an expression that uses the quadratic formula to find the solutions
_	Introduction to the Quadratic	of a quadratic equation; determine the value of the discriminant of a quadratic
9	Formula	equation.
		Solve a quadratic equation using the quadratic formula; determine the number of
_	Solving Quadratic Equations:	real zeros of a quadratic function by finding the values of a, b, and c and then
9	Quadratic Formula	calculating the discriminant.
	1	Exponential Functions and Equations
		Graph an exponential growth function, and state its domain and range; identify an
		exponential growth function given tables, graphs, and function rules, determining the
		rate of change; write an exponential growth function to model a real-world problem,
9	Exponential Growth Functions	pointing out constraints in the modeling context.

Placement		
Grade	Lesson Title	Lesson Description
		Graph an exponential decay function, and state its domain and range; identify an
		exponential decay function given tables, graphs, and function rules, determining the
		rate of change; write an exponential decay function to model a real-world problem,
9	Exponential Decay Functions	pointing out constraints in the modeling context.
		Determine the neuroneters and/an ansate an equation for a ventically dilated
	Vertical Otrataless and Obvinks	Determine the parameters and/or create an equation for a vertically dilated
0	of Experiential Experience	exponential growth of decay function given a table, equation, of scenario, match a
9		Graph, table, of scenario to an equation of a function of either type of vice versa.
0		Graph reflections of exponential functions, and determine the domain and/or range
9	Translations of Exponential	
0		Graph and describe translations of exponential functions; analyze their key aspects
9	Functions	Write recursive and explicit rules for geometric sequences using function notation:
		araph and analyze geometric sequences as a special case of exponential functions
Q	Geometric Sequences	with the domain restricted to natural numbers
5	Geometric Sequences	
		Proof and Congruence
		Identify and name undefined terms of point, line, plane, and distance along a line;
		analyze descriptions and diagrams that illustrate basic postulates about points, lines,
10	Euclidean Geometry	and planes.
		Identify and name a ray and/or a line segment; identify and name an angle, an arc,
		and/or a circle; identify and name a pair of parallel lines and/or a pair of
10	Defining Terms	perpendicular lines.
		Apply the protractor postulate and angle addition postulate to calculate angle
		measures; apply the ruler postulate and segment addition postulate to calculate the
		lengths of line segments; identify a midpoint of a line segment and a bisector of an
10	Measuring Length and Angles	angle.
		Identify proof formats, essential parts of a proof, and assumptions that can be made
10	Introduction to Proof	from a given drawing.

Placement		
Grade	Lesson Title	Lesson Description
		Calculate angle measures by using definitions and theorems about linear pairs and
		vertical angles; complete the steps to prove statements using linear pairs and
10	Linear Pairs and Vertical Angles	vertical angles; identify linear pairs and vertical angles from given diagrams.
		Complete the steps to prove statements using complementary angles and
	Complementary and	supplementary angles; identify these angles from given diagrams, and solve
10	Supplementary Angles	problems involving their measures.
		Determine the image of a figure after a given composition of transformations;
10	Compositions	determine the rule that describes a given composition of transformations.
		Identify rotational symmetry and its order in geometric figures; identify reflectional
10	Symmetry	symmetry in geometric figures and the number of lines of symmetry.
		Solve problems involving the distance from a point on the perpendicular bisector to
	Parallel and Perpendicular	both endpoints of the line segment; identify parallel, perpendicular, and skew lines
10	Lines	from three-dimensional figures.
		Solve for angle measures when parallel lines are cut by a transversal, and complete
10	Lines Cut by a Transversal	the steps to prove angle relationships.
		Apply theorems to determine if lines are parallel; prove lines are parallel given angle
10	Proving Lines Parallel	relationships.
		Calculate the measures of interior and exterior angles of a triangle, and complete
		the steps to prove that the sum of the measures of the interior angles is 180
10	Triangle Angle Theorems	degrees.
		Construct or justify the construction of isosceles and equilateral triangles; determine
	Triangles and Their Side	if three given segments will satisfy the triangle inequality; determine the length or
10	Lengths	parameters for a third side of a triangle given the other two sides.
		Solve for unknown measures of isosceles triangles; identify characteristics of an
		isosceles triangle; complete the steps to prove the isosceles triangle theorem and its
10	Isosceles Triangles	converse.
		Determine if figures are congruent, and, if so, identify their corresponding parts;
10	Congruent Figures	determine unknown measures of congruent figures.
		Using SAS, complete the steps to prove triangles are congruent, and identify the
10	Triangle Congruence: SAS	sides and angle that can be used to prove triangle congruency.

Placement	Losson Titlo	Losson Description
Grade	Triangle Congruence: ASA and	Using ASA or AAS, complete the stops to prove triangles are congruen t and identify
10		the side and angles that can be used to prove triangle congruency
10	Triangle Congruence: SSS and	Using SSS or HL, complete the steps to prove triangles are congruent, and identify
10		the side and angles that can be used to prove triangles are congruency
10		
	Coc	ordinate and Transformational Geometry
		Complete the steps to prove the slope criteria for parallel and perpendicular lines
	Slopes of Parallel and	using coordinate geometry; determine if two lines are parallel or perpendicular; use
10	Perpendicular Lines	slope criteria to find additional points on a parallel or perpendicular line.
		Write the equation of a line perpendicular to a given line or segment that goes
		through a particular point; write the equation of a line parallel to a given line that
10	Writing Linear Equations	goes through a particular point.
		Calculate and interpret the scale factor for dilations of figures; determine the
		unknown measures of an image or pre-image of a dilated figure given the scale
		factor; verify experimentally the properties of dilations given a center and a scale
10	Dilations	factor.
		Apply coordinate algebra proofs to triangles and quadrilaterals; calculate the
10	Figures in the Coordinate Plane	perimeter of a triangle or quadrilateral given the coordinates of the vertices.
		Solve problems involving area of a sector with central angles measured in degrees
10	Area of a Circle and a Sector	and in radians.
	Area of Triangles and	
10	Parallelograms	Solve problems involving areas of triangles and parallelograms.
		Calculate the perimeter of a rhombus, trapezoid, or kite given the coordinates of the
	Perimeter and Area of Rhombi,	vertices; solve problems involving the area of these figures given the coordinates of
10	Trapezoids, and Kites	the vertices.
		Calculate the area of a regular polygon and the length of its apothem; solve real-
10	Area of Regular Polygons	world problems involving the area of regular polygons.
		Calculate the area of composite 2-D figures, including real-world applications;
		decompose composite 2-D figures; write an expression that represents the area of a
10	Area of Composite Figures	composite 2-D figure.

Placement		
Grade	Lesson Title	Lesson Description
		Calculate the volume or an unknown measure of an oblique prism based on a
		mathematical or real-world model; write expressions to represent the volumes or
10	Volume of Prisms	unknown measures of oblique prisms.
		Calculate the volume or an unknown measure of a right hexagonal pyramid and an
		oblique pyramid based on a mathematical or real-world model; write expressions to
		represent the volumes or unknown measures of right hexagonal pyramids and
10	Volume of Pyramids	oblique pyramids.
		Solve mathematical and real-world problems involving the volume of oblique cones
	Volume of Cylinders, Cones,	and oblique cylinders; write expressions to represent the volumes or unknown
10	and Spheres	measures of cylinders and cones.
	Cavalieri's Principle and Volume	Calculate the volumes of composite figures, including those that model real-world
10	of Composite Figures	objects; write an expression to represent the volume of a composite figure.
		Identify similar solids, and determine their scale factors; determine and describe how
		proportional or nonproportional changes in linear dimensions of a shape affect other
	Changing Dimensions in 3-D	measurements such as perimeter, area, surface area, or volume; solve problems
10	Figures	about length, area, and volume measures using scale factors.
10		Solve mathematical and real-world problems about lateral and surface areas of
10	Surface Area	composite figures.
		Similarity, Proof, and Triginometry
		Determine if two polygons are similar using dilations; find the coordinates of the
		vertices of an image or pre-image of a dilated polygon given the scale factor; verify
		the properties of dilations, including the scale factor and slopes of corresponding
10	Similar Figures	line segments.
		Complete the steps to prove triangles are similar using the AA similarity theorem;
10	Triangle Similarity: AA	identify the composition of similarity transformations in a mapping of two triangles.
		Determine unknown measures of 30-60-90 triangles and 45-45-90 triangles; solve
10	Special Right Triangles	real-world problems involving special right triangles.

Placement Grade	Lesson Title	Lesson Description
		Given an acute angle of a right triangle, label the hypotenuse, opposite, and
10	Trigonometric Ratios	adjacent sides, and write ratios for sine, cosine, and tangent.
	Solving for Side Lengths of	Apply trigonometric ratios to solve real-world problems and solve for unknown side
10	Right Triangles	lengths of right triangles.
	Solving for Angle Measures of	Apply inverse trigonometric functions to solve real-world problems and to solve for
10	Right Triangles	unknown angles of right triangles.
		Convert between radian and degree measure; evaluate trigonometric functions, and
	Angles and Trigonometric	use them to solve problems; use the unit circle to explain key features of the sine
11, 12	Functions	and cosine functions.
11, 12	Law of Sines	Apply the law of sines to solve mathematical and real-world problems.
11, 12	Law of Cosines	Apply the law of cosines to solve mathematical and real-world problems.
		Solve area and perimeter problems using A = 1/2absinC and Heron's formula; derive
11, 12	Area and Perimeter of Triangles	the area formula A = 1/2absinC.
		Probability
	Independent and Mutually	Calculate probabilities using the addition rule and the multiplication rule of
10	Exclusive Events	independent events; identify mutually exclusive and independent events.
		Calculate conditional probabilities using formulas and Venn diagrams; calculate
		probabilities of compound events; use calculations to determine if two events are
10	Conditional Probability	independent.
	Probability and Two-Way	Compute conditional probabilities from data displayed in a two-way table; construct
10	Tables	a two-way table, and use it to determine if two events are independent.
	Cubic, Cube Root, Absol	ute Value and Rational Functions, Equations, and Inequalities
	Simplifying Rational	Simplify rational expressions using factoring techniques, and determine their
11, 12	Expressions	excluded values.
	Simplifying Rational	Simplify rational expressions using factoring techniques, and determine their
11, 12	Expressions by Factoring	excluded values.
	Multiplying and Dividing	
11, 12	Rational Expressions	Perform multiplication and division of rational expressions.

Placement		Loosen Description
Grade	Lesson Title	Lesson Description
44.40	Adding and Subtracting	Add and subtract rational expressions; simplify complex rational expressions
11, 12	Rational Expressions	containing sums or differences.
44 40		Solve rational equations, and determine extraneous solutions; use the equations to
11, 12	Rational Equations	model and solve real-world problems.
	Att	ributes of Functions and Their Inverses
		Use algebraic techniques to determine key features of a rational function; graph a
11, 12	Graphs of Rational Functions	rational function, and analyze its key features.
		Describe the key features of a polynomial function, and identify these features from
11, 12	Graphs of Polynomial Functions	a given graph.
11 12	Graphing Polynomial Functions	Granh polynomial functions using key features
11, 12		Describe the effect of one or more transformations on the graph of a function: write
		the equation of a transformed function given its graph: recognize even and odd
11, 12	Functions and Transformations	functions.
,		
	Quadratic and	Square Root Functions, Equations, and Inequalities
11, 12	Parabolas	Determine the equation of a parabola given the focus and directrix.
,		
	Exponen	tial and Logarithmic Functions and Equations
	Solving Exponential Equations	
11, 12	by Rewriting the Base	Solve exponential equations by rewriting bases.
	Evaluating Logarithmic	Evaluate and solve logarithmic expressions by converting between logarithmic and
11, 12	Expressions	exponential forms.
		Expand, simplify, and evaluate logarithmic expressions using properties of
11, 12	Properties of Logarithms	logarithms.
	Solving Equations Using	Apply properties of logarithms to solve logarithmic equations; determine extraneous
11, 12	Properites of Logarithms	solutions of the equations.

Placement Grade	Lesson Title	Lesson Description
		Analyze exponential and logarithmic functions in base e to determine key features of
		the graph; apply properties of logarithms and exponents to solve exponential and
		logarithmic equations having base e; determine the domain and range of
11, 12	Base e	exponential and logarithmic functions in base e.
	Solving Exponential and	Solve exponential and logarithmic equations using inverses, properties, and
11, 12	Logarithmic Equations	algorithms.

